ACOUSTIC STREAMING IN A BOUNDARY
LAYER
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Many papers have been devoted to the analysis of acoustic streaming in boundary layers [1-7]. The
acoustic streaming problem has been solved between parallel walls [1], in a tube [2], around circular elliptical
cylinders [3, 4], and around an arbitrary curvilinear interface [5, 6]. In all these papers, however, the influence
of the thermal conductivity of the fluid on the acoustic streaming is neglected (with one obvious exception [2]).
Moreover, all the papers essentially treat the special case of streaming in a wave field contiguous with the
boundary. In the present article we determine the acoustic streaming in a boundary layer in the field of an
obliquely incident plane wave in a viscous heat-conducting medium.

Slow streaming in a boundary layer is described by the well-known equation [5, 7]
pvAY, — F =0, (1)
F = —p,< (Vl‘V)Vl + V1(V Vi),

in which pj is the density of the fluid in the undisturbed state, V, is the acoustic streaming velocity, v is the
kinematic viscosity coefficient, and the angle brackets denote time average.

The expression derived by Konstantinov [8] for the first-approximatien acoustic field V; can be written
as follows for small grazing angles of the incident wave:
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M = exp [i (knz —ot + % )], oy = exp (— Bz), v, = exp (— zz),

where V5, Vyf1 are the velocities in the longitudinal incident and reflected waves, V;p is the velocity in the
viscosity wave, VT is the velocity in the thermal wave, ex, ez are unit vectors of a Cartesian coordinate
system with its axis Ox directed along the boundary, ks =¢/ c is the longitudinal wave number, and 871, o™t
are the thickness scales of the viscous and thermal acoustic boundary layers.

The moduli »fy, VB, VT and phases ¢y, ¢B, ¢t of the reflection coefficients are given by the expressions
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where v is the adiabatic exponent, wr is the thermal d1ffus1v1ty, and & is the critical angle of Konstantinov [8].
Beginning with the work of Schlichting {3], the theory of acoustic streaming near boundaries has been
based on the boundary-layer equations. According to this theory, terms of order greater than 1/31 (where !

is the space scale of the acoustic field) are retained in all the mathematical expressions. However, to obtain
the dependence of the acoustic streaming velocity on the grazing angle of the incident wave the indicated approx-
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imation is inadequate. We therefore retain terms through order 1/81 inclusively in the first-approximation
expressions for the acoustic field (3).

In a bouadary layer the tangential component of the force F is known to be much larger than the normal
component 5], i.e., we can assume that F= Fgex. In this case V, is also directed along the axis Ox, and
V,=V,(z)ex. to facilitate the ensuing calculations in the case of multiple-wave processes it is practical to
write Eq. (1) in'matrix form. To do so we introduce the matrix of pair interactions

Faa Fan Fas Far
Fra Fun Fap Fur
Fea Fon Fuoy Fun
Fog Foa Frn Fr !

All except the diagonal elements of this matrix characterize the forces created by interaction of different wave
modes. The diagonal elements, on the other hand, describe the forces created by self-action of the waves:

Fou = "'90<(V1a‘V)me -+ V1ax(‘7 “Vin)D,
Fra = —Po<(Vm‘V)V1ax + Iflnx(V'V1a)>v
Faa = "Po<(V1a‘V)V1ax 4+ Viaxly - Via)).

With the introduction of the matrix S the acoustic streaming equation (1) now takes the form
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where Vg, VoI, VB, and Vo are the X components of the acoustic streaming velocities created by interaction
of the corresponding wave with all other wave modes, including self-action.

Integrating Eq. (4) with the boundary conditions V,|,—, = 0, dV,/dz}, .~ = O,we obtain
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where A is the amplitude of the incident field and Pr=v/wr is the Prandtl number,
The streaming velocities on the outer side of the boundary layer are determined from (5) ag z~o:
Vaa = — 0 [0 8i0 @5 4 V28I @a], Van = 0 [V Sin (Qu — @x) -
-+ Mot 8in (Qa — @n)], Var = X‘:‘ Vyls ?‘P_r—fi_q)—* [2[’1:1/2 ] (q;B — Qr - %n) —
— (1 —Pr)sin (cp,3 — Qr+ % n)], Von = 0vy {).1 sin(i-;- — Qs ) — (6)
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the mass flow rate is given by the expressions [7]
' U=V, + Vyg, Vg =& V)V,
in which £, is the displacement vector of the fluid particles in the acoustic wave, &, = jVI dt. Using expressions
(2) for V;, we obtain the following for Vi, on the outer side of the boundary layer:
Vo, =Vy(@es V, =A42[1 420, cos g -+ vi]. (N

Expressions (6) and (7) therefore enable us to calculate the acoustic streaming velocity for arbitrary
grazing angles of the incident wave. We have carried out a numerical computation for streaming in air; the
results are given in Fig. 1, in which it is seen that the flow velocity changes in the vicinity of the critical angle
of Konstantinov. The general behavior of the velocity with variation of the frequency coincides with the
behavior of the coefficient of reflection of acoustic waves from a perfectly rigid wall {8]; the higher the fre-
quency the higher the rate of change of velocity. The dashed line represents the velocity U calculated accord-
ing to expressions in [3, 5]. It follows from the graph that the acoustic streaming velocity for steep oblique
wave incidence is much greater thanthe streaming velocity for grazing incidence. This conclusion is supported
by published experimental investigations. For example, it has been shown [9] that if the acoustic wave is
incident at a steep angle with the boundary, the mass-transfer process in the acoustic field, being determined
mainly by the acoustic streaming, proceeds much more rapidly than for a boundary parallel to the direction of
wave propagation.

We now find an analytical expression for the acoustic streaming velocity in the case 1 »>®. Here the
viscosity and thermal conductivity of the fluid do not affect the reflection coefficients:

2kyy Ll
ta=1, g =0, v,,=—é71-, Pp=—"7

K] ;
UT=(Y"‘1);12‘1; (PT=—1»

and from (6) and (7) we obtain

» I (8)
Vz=_T[(1—V2)—V2m]'
e (9)
1T [

It follows from (8) and (9) that V, and V. do not depend either on the grazing angle n or on the acoustic fre-
quency, whereas for grazing angles near the critical angle of Konstantinov the streaming velocity is a function
of these variables.
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MICROCONVECTIVE HEAT -AND MASS-TRANSFER
PROCESSES IN FLUIDS WITH INTERNAL
ROTATION

V. G. Bashtovoi, A. N. Vislovich, UDC 536.2:532.584:538.4
and B. E. Kashevskii

A number of experimentally observed phenomena, (the magnetoviscosity effect, i.e., increase of the
viscosity of a ferromagnetic suspension in a magnetic field [1], and the entrainment of a polar fluid by a non-
steady magnetic field [2-4]) can be explained on the basis of the notion of internal rotations and the agsociated
internal friction as a mechanism of momentum transfer from the field to the medium [5-8]. In line with the
expanding study of the influence of internal rotations on macroscopic fluid motion there is also considerable
interest in the development of mathematical models of asymmetric polarizable and magnetizable media [5,
9-12].

In the present article we show that the influence of internal rotations under definite conditions not only
leads to a modification of the momentum-transfer law, but also proves significant in heat~transfer processes
and, in the case of multicomponent fluids, mass-transfer processes as well, giving rise to a highly specific
"microconvective® transfer mechanism.

Inasmuch as the significance of the internal-rotation concept is particularly highlighted in the case of
suspensions and colloidal solutions, we discuss a certain volume of a suspension in a system S', in which
ma croscopic motion does not take place. This system rotates relative to the laboratory frame S with an
angular velocity =(1/2)rotv (rot=curl). In the system S' the particles of the suspension rotate with a veloc-
ity R =w—8, where w is their rotational velocity in the system S. The rotating particles together with the
fluid entrained by them through viscosity induce a local microconvective heat transfer in the system §' in the
case of a nonuniform temperature distribution in the fluid. When the distance between the particles is commen-
surate with their sizes and the latter are large, a possible outcome of the interaction of the temperature
fields of the individual microvortices and heat transfer between them is a macroscopic heat flux qr, which
competes with the conductive heat flux qq.

We estimate the ratio qr/qy on the basis of the heat-transfer equation vyT =uy?T, applying it to the
individual microvortex, in which case it is necessary to adopt as the characteristic space scale the micro-~
vortex radius I,. Then v=~Rl,, and:
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